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Introduction
Analysis of fluid flow and heat transfer is important due to many engineering
applications such as thermal insulation, cooling of electronic equipments, solar
energy devices, nuclear reactors etc. An extensive study on fundamental fluid
flow and heat transfer problems is necessary in order to design these heat transfer
equipments. For most of the thermal flow applications, the fluid can be considered
incompressible and Navier-Stokes equations represent the mathematical model of
the reality. To achieve a proper understanding of a physical problem via numeri-
cal solution of the governing equations, it is essential to use an algorithm which
is reliable. In our earlier papers[1-4], we have presented a general algorithm for the
solution of both compressible and incompressible Navier-Stokes equations.

Finite element method has been used for the solution of Navier-Stokes
equations since the early 1970s[5-7]. The standard Bubnov-Galerkin method,
being equivalent to a central difference approximation, when applied to
convection dominated problems produces a solution with oscillations or
“wiggles”[5]. Such unrealistic solutions were eliminated via many stabilization
schemes in finite elements[8-10] inspired by the upwinding techniques of
FDM[11,12]. Initially the desired effect was achieved owing to Petrov-Galerkin
type weighting functions[8-10], thus increasing not only the stability but also
the accuracy of the solution. Once an analogy between upwinding and the so-
called balancing diffusion was established, other procedures were proposed,
where an artificial diffusion is added to the equation so permitting the standard
Galerkin method to be used[13,14]. However schemes such as the Taylor-
Galerkin[15] or the characteristic Galerkin[16] method have shown that
balancing diffusion emerges naturally when the equations are discretized in
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time. In particular in the characteristic Galerkin method the temporal derivative
is discretized along the characteristic, where the equation is self-adjoint in
nature and thus the Galerkin spatial approximation is optimal.

Another difficulty, which arises when the Galerkin finite element method is
used to solve incompressible (or slightly compressible) Navier-Stokes equations,
is due to the zero diagonal term present in the discretized equations. Penalty
forms introduce a small term in the diagonal, so avoiding the singularity of the
equations, but still the Babŭska-Brezzi conditions have to be satisfied a priori
and so penalty forms can be applied only with reduced integration[5]. Other
methods have been proposed to avoid these restrictions using particular
weighting procedures[17,18]. Nevertheless, as it has been observed by Scheider
et al.[19], Kawahara and Ohmiya[20], and then shown by Zienkiewicz and
Wu[21], these restrictions are avoided naturally through some time stepping
procedures. One of these is the operator splitting scheme, on which the present
algorithm is based, that was initially introduced by Chorin[22] in the finite
difference context, and then adopted to finite elements[19-21,23,24]. The method
is based on the calculation of an intermediate velocity from a momentum
equation where the pressure gradients are omitted; the pressure is then
evaluated from an equation of Laplacian form (Poisson equation). Finally the
velocity is corrected using the computed pressures. When the steady state is
reached the discretized equations, instead of the zero term, have a diagonal term
proportional to the time increment. This allows arbitrary order interpolation
functions for velocity and pressure.

In this work equal-order interpolation functions have been used for all the
variables and the algorithm has been used in its semi-implicit form[1-3,24]. The
simplex linear triangular elements are used to divide the domain into finite
elements. The solution of benchmark problems, such as natural convection in a
cavity and laminar flow over a backward facing step for forced convection,
show the excellent accuracy of the scheme. Further, this has been confirmed
when the algorithm has been used to solve some practical problems for which
the agreement with the experiment is excellent.

Governing equations
The governing equations for incompressible viscous flow in their dimensionless
form are given here. Invoking the Boussinesq approximation, the equations in
two dimensions are
continuity equation:

(1)

momentum equation:

(2)
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energy equation:

(3)

defined in Ω × [0,t] with Ω ℜ 2 domain of interest.⊃

Figure 1.
Buoyancy driven flow in

a square cavity: (a)
domain and boundary

conditions; (b) finite
element mesh, no. nodes
2,601; no. elements 5,000
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In the equations above ui = (u1,u2) is the velocity components, p is the pressure,
γ is the vector equal to unity in vertical direction and zero in horizontal

Figure 2.
Stream lines (left),
velocity vectors
(middle) and isotherms
(right) for different
Rayleigh numbers:
(a) Ra = 103;
(b) Ra = 105; 
(c) Ra = 106;
(d) Ra = 4 × 107
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Figure 3.
(a) Local Nusselt

number distribution
along the hot wall;

(b) vertical velocity
distribution at mid-

height along x-direction
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direction, T the temperature of the fluid, Pr the Prandtl number, Ra the Rayleigh
number and τ is the shear stress tensor, given by:

(4)

where δij is the Kronecker delta.
The following scales and nondimensional parameters are used in the above

governing equations:

(5)

where xi = (x1, x2) represent the coordinate axes, ρ is the density, α the thermal
diffusivity and µ the dynamic viscosity of the fluid; Th,Tc and L are
respectively the higher, lower temperatures and the characteristic length of
the problem examined. The asterisk has been used for the dimensional
variables.

When forced convection dominates the process different scales and
parameters are introduced, such as:

(6)

Ra Nu Ψvmax vmax
[26] [27] Present [26] [27] Present [26] [27] Present

103 1.116 1.118 1.117 1.174 1.175 1.167 3.696 3.697 3.692
104 2.243 2.245 2.243 5.081 5.074 5.075 19.64 19.63 19.63
105 4.517 4.522 4.521 9.121 9.619 9.153 68.68 68.64 68.85
106 8.797 8.825 8.806 16.41 16.81 16.49 221.3 220.6 221.6
107 – 16.52 16.40 – 30.17 30.33 – 699.3 702.3
4 × 107 – 23.78 23.64 – – 43.12 – – 1417

Sources: [26,27]

Table I.
Natural convection 
in a square cavity: 
comparison with 
benchmark solution
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where U
—

is the free stream velocity, Re is the Reynolds number. Appropriate
scalings are used dependent on the nature of the problem considered.

Characteristic-based-split algorithm (CBS)
In this section, we give the essential steps of the CBS algorithm. The Galerkin
spatial approximation can be found in detail elsewhere[5], and is not discussed
here. As we deal with incompressible problems, the semi-implicit form of the
algorithm has been used. We shall consider only the case where θ1 = 1 and θ2 =
1 (see[1]). The four essential steps of this algorithm are:
step 1, calculation of intermediate momentum

(7)

Figure 4.
Flow over a backward
facing step: (a) domain

and boundary
conditions; (b) finite

element mesh, 
no. nodes: 4,183, 

no. elements: 8,092; 
(c) mesh near the step
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Figure 5.
Stream lines, pressure,
isotherm and local
Nusselt number
distribution for 
Re = 100

(a) streamlines

(b) pressure contours

(c) isotherms

(d) hot wall local Nusselt number

2.00

1.50

1.00

0.50

0.00
0.00 5.00 10.00 15.00 20.00 25.00

x/h

N
u



Characteristic-
based-split (CBS)

algorithm

977

Figure 6.
Stream lines, pressure,

isotherm and local
Nusselt number
distribution for 

Re = 229

(a) streamlines

(b) pressure contours

(c) isotherms

(d) hot wall local Nusselt number
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step 2, calculation of pressure field

(8)

Figure 7.
Comparison of present
predictions with
experimental and
theoretical data:
(a) velocity profile at
different sections;
(b) reattachment length
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step 3, velocity correction

(9)

Figure 8.
Vortex shedding

downstream a cylinder:
(a) domain and

boundary conditions; 
(b) finite element mesh,

no. nodes: 5,944; 
no. elements: 11,456; 

(c) mesh near the
cylinder
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step 4, energy equation

(10)

where ~u is the intermediate velocity. The algorithm in this form is condi-
tionally stable. The critical time step given by: ∆tcrit = h/|u|[24] which is from
the linear stability analysis of one dimensional convection-diffusion
equation[25].

Numerical examples
In this section a variety of test problems have been presented in order to prove
the capability of the present algorithm. Some benchmark examples and few

Figure 9.
Vortex shedding behind
a cylinder, Re = 200

Time = 37.5

Time = 43.5

Time = 44.1

Time = 43.2

Time = 43.8

Time = 44.7

(b)  pressure contours (d)  isotherms

(a)  streamlines
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more difficult heat transfer problems are solved in this study. The fluid
considered is air in all the example problems.

Natural convection in a square cavity
The first example presented is the buoyancy-driven flow in an square cavity
which is a standard test case for validating algorithms and computer codes
which are concerned with the solution of thermal flow problems.

The problem definition and the mesh used for the calculation are shown in
Figure 1. Both the horizontal walls are assumed to be thermally insulated, and
the vertical sides are kept at different temperatures. For the velocity, no-slip
conditions are assumed to prevail on all the walls of the cavity. A wide range of
Rayleigh numbers from 103 to 4 × 107 are studied and the results for the steady
state solution are presented in Figures 2 and 3. It is seen that the steady-state
solution presented in these figures are symmetric with respect to the center of
the cavity and is in excellent agreement with the benchmark solution[26] and
other available results. Table I shows the comparison of quantitative results
with the available benchmark solutions. It is seen that the agreement is
excellent even at higher Rayleigh numbers.

Figure 10.
Vortex shedding behind

a cylinder, Re = 200,
vertical velocity

distribution with time at
a point 4.5d

downstream the
cylinderadimensional time
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Laminar flow and heat transfer over a downstream facing step
This is the second bench-mark to validate the forced flow and heat transfer.
Unlike the buoyancy-driven flow here the momentum and energy equations are

Figure 11.
(a) Flow past a tube
bank; (b) formulation
and boundary
conditions (three
cylinders); (c) finite
element mesh, 
no. nodes: 2,162; 
no. elements: 3,948; 
(d) mesh near the
cylinders

(c)
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not coupled, but the convective terms become stronger. The problem definition
and mesh are shown in Figure 4, and the height of the step is the characteristic
length. A laminar flow is considered to enter the domain at inlet section placed
four times the step height before the enlargement. The inlet velocity profile is
parabolic and the Re is based on the average velocity at the inlet. The total
length of the domain is taken equal to 40 times the step height so that the zero
pressure at exit is valid (traction free boundary conditions for the pressure); free
boundary conditions were assumed for all the other variables. All the walls of
the duct are insulated except the lower one downstream the step, which is kept
at a constant temperature higher than that of the fluid at the inlet. Figures 5, 6
and 7 present the results for Reynolds numbers 100 and 229. In general solution
is smooth even at a Reynolds number of 229. The heat transfer results are in
good agreement with those of Kondon et al.[29]. The comparison of present
predictions (Figure 10) with the experiment of Denham and Patrick[28], has
small deviations and this can be attributed to the influence of the inlet velocity

Figure 13.
Flow past a tube bank

at Re = 150 (three
cylinders): (a) stream

lines; (b) pressure
contours; (c) isotherms

(a)

(b)

(c)

Figure 12.
Flow past a tube bank

at Re = 50 (three
cylinders): (a) stream

lines; (b) pressure
contours; (c) isotherms

(a)

(b)

(c)
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profile. In fact the experimental data are not generated from an exactly
parabolic inlet velocity profile.

Vortex shedding behind a circular cylinder
The domain studied and the finite element mesh around the cylinder are
shown in Figure 8. The inlet velocity is assumed to have a parabolic profile.
On the outer walls of the domain, no-slip conditions are assumed and are also
thermally insulated. The cylinder on the flow path is assumed to be at a
higher temperature than that of the incoming fluid. Also zero velocity
components are imposed on it. Free boundary condition for the outlet flow
has been “imposed” for all the variables except the pressure which is equal to
zero. In this problem after an initial phase, the flow starts separating and
symmetric eddies form behind the cylinder. After a certain time a periodic
process of formation of vortices has been observed. The distribution of the
streamlines in Figure 9 shows the formation of vortices behind the cylinder
at different non-dimensional times; in the same figure a sample of
distributions of the pressure and of the isotherms are also given. Figure 10
shows the time dependence of the vertical velocity 4.5 diameters downstream
the cylinder.

Figure 14.
Flow past a tube bank
(five cylinders):
(a) stream line and
isotherm patterns
(Re = 50); (b) stream

line and isotherm
patterns (Re = 150)

(a)

(b)

Streamlines

Isotherms

Streamlines

Isotherms
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Heat transfer from tube banks
Study of flow over tube bundles is important due to its application like heat
exchanger. Here, as in many other design problems the data of a numerical
simulation can save a lot of time. The geometry considered and the grid
generated are shown in Figure 11. The same outflow boundary conditions are
applied as in the last two examples. The calculation was performed for different
Reynolds numbers and Figures 12, 13 and 14 present the results. As already
seen the algorithm permits to obtain a very smooth solution for the pressure
even when the convection increases.

Figure 15.
(a) Natural convection

from an array of hot
staggered plates; (b)

formulation and
boundary conditions
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Figure 16.
Staggered plates, 
W = 0.1, Ra = 5 × 105:
(a) finite element mesh,
no. nodes: 2,640,
no. elements: 4,928; 
(b) stream lines;
(c) isotherms

(a) (b) (c)



Characteristic-
based-split (CBS)

algorithm

987

Natural convection from staggered vertical plates
This problem applies to the design of many devices used in energy conversion,
and in electronic components. A typical geometry for such devices is shown in
Figure 15, the domain of interest and the boundary conditions used are also
presented in this figure. Characteristic dimension of the problem here is the

Figure 17.
Staggered plates, 

W = 0.2, Ra = 5 × 105:
(a) finite element mesh,

no. nodes: 2,640; 
no. elements: 4,928; 

(b) stream lines;
(c) isotherms

(a) (b) (c)
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height of the channel L. The hot plates heat the surrounding fluid, which
produces a variation in density and this induces flow in the channel due to
buoyancy. In this study, calculations have been carried out for different
Rayleigh numbers; for Ra = 5 × 105 and with of the channel W = 0.1 streamlines
and isotherms are shown in Figure 16 together with the finite element mesh.
Similar results, shown in Figure 17 correspond to W = 0.2. In fact it has already
been pointed out by Ledezma and Bejan[30] that this dimension has an optimal
value which maximise the heat transfer from the plates. The dimensionless
parameter introduced to perform such optimization was:

where q is the heat transfer rate for the channel, k the thermal conductivity of
the fluid and B the length of the plates in the direction perpendicular to the x
and y plane. The comparison between present and experimental results is

Figure 18.
Comparison of the
dimensionless heat
transfer with
experimental and
numerical data
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presented in Figure 18. The agreement is seen to be excellent and is much better
than the results predicted by Ledezma and Bejan[30].

Conclusions
The Characteristic-Based-Split algorithm (CBS) has been applied to many
thermal flow problems in its semi-implicit form. From a comparison of the
results obtained with those available in literature (both experimental and
theoretical) it is proved that the scheme performed excellently in solving these
problems. In fact the agreement is excellent especially when the equations are
coupled together via buoyancy term in the momentum equation. It is also
proved that the present algorithm can be used to solve complicated heat
transfer problems very accurately.
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